Вы мечтали о таком, чтобы можно было проверить методом математичсекой индукции справедливость того или иного утверждения в реальном времени онлайн? Теперь такая возможность есть. Вам это пригодится, если Вы знаете что такое матиндукция. Но все же напомним для студентов:

Математическая индукция — метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что, если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.
А теперь на примерах покажем, как можно проверять справедливость тождеств методом матиндукции. Начнем с классики. Докажем справедливость следующего соотношения для любого значения \(n\): \[\sum_{j=1}^n j=\frac{n\times\left(n+1\right)}{2}\] Это известная формула суммы \(n\)-первых натуральных слагаемых, получанная юным Гауссом. Для того, чтобы воспользоваться нашим онлайн калькулятором, требуется ввести вот такую команду:
prove by induction sum of j from 1 to n=n(n+1)/2 for n>1
А теперь попробуем пример посложнее. Проверим будет ли выражение \(8^n-3^n\) делиться на 12 для всех значений \(n>0\). Для этого введем следующую команду:
use induction to show that 8^n-3^n is divisible by 12 for n>0
Результат решения отрицательный - выражение не делится на 12 для всех значений \(n\). Если Вы хоть чуть-чуть знаете английский, то проблем с составлением команд не должно возникать. А если вы не знаете английского, то просто подставляйте свои формулы в наши команды.

Оценка - 1.0 (77)

 Похожие публикации
2016-08-01 • Просмотров [ 83548 ]