Интегральное преобразование, связывающее функцию F(x) комплексного переменного (изображение) с функцией f(x) вещественного переменного (оригинал). С помощью преобразования Лапласа исследуются свойства динамических систем и решаются дифференциальные и интегральные уравнения. Благодаря данной операции свёртку двух функций можно свести к операции умножения, а линейные дифференциальные уравнения преобразовать в алгебраические.
Прямое преобразование :
Обратное преобразование :
Похожие публикации
2014-11-30 • Просмотров [ 91329 ]