Начальные и центральные моменты
Кроме характеристик положения — средних, типичных значений случайной величины, — употребляется еще ряд характеристик, каждая из которых описывает то или иное свойство распределения. В качестве таких характеристик чаще всего применяются так называемые моменты.
Понятие момента широко применяется в механике для описания распределения масс (статические моменты, моменты инерции и т. д.). Cовершенно теми же приемами пользуются в теории вероятностей для описания основных свойств распределения случайной величины. Чаще всего применяются на практике моменты двух видов: начальные и центральные.
Начальным моментом \(s\)-го порядка прерывной случайной величины \(X\) называется сумма вида:
Очевидно, это определение совпадает с определением начального момента порядка \(s\) в механике, если на оси абсцисс в точках \(x_{1}, x_{2},..., x_{n}\) сосредоточены массы \(p_{1}, p_{2},..., p_{n}\).
Для непрерывной случайной величины \(X\) начальным моментом \(s\)-го порядка называется интеграл
Пользуясь знаком математического ожидания, можно объединить две формулы 1 и 2 в одну.
Поэтому можно написать общее определение начального момента \(s\)–го порядка, справедливое как для прерывных, так и для непрерывных величин:
Пусть имеется случайная величина \(X\) с математическим ожиданием \(m_{x}\). Центрированной случайной величиной, соответствующей величине \(X\), называется отклонение случайной величины \(X\) от ее математического ожидания:
Моменты центрированной случайной величины носят название центральных моментов. Они аналогичны моментам относительно центра тяжести в механике.
Таким образом, центральным моментом порядка \(s\) случайной величины \(X\) называется математическое ожидание \(s\)-й степени соответствующей центрированной случайной величины: