Книга Э. Камке является единственным в мировой литературе справочником по дифференциальным уравнениям в частных производных первого порядка для одной неизвестной функции. В ней дается конспективное изложение важнейших разделов теории и собрано около 500 уравнений с решениями.
Практические занятия по высшей математике. В первой части практические занятия по аналитической геометрии на плоскости и в пространстве.
Книга состоит из 21 главы и разделена на две части. В первой части рассматриваются дифференциальные уравнения в вещественной области, во второй—в комплексной области.
В пособии изложены основы математического анализа, математической логики, дифференциальных и разностных уравнений, сопровождаемые большим количеством примеров и задач. В конце каждой темы приведены соответствующие применения пакета символьных вычислений. Каждый раздел книги завершается главой, которая содержит применения теории данного раздела в социально-экономической сфере.
Изложены основы теории обыкновенных дифференциальных уравнений и даны основные понятия об уравнениях с частными производными первого порядка. Авторы стремились объединить строгость изложения теории дифференциальных уравнений с прикладной направленностью ее методов. Приведены многочисленные примеры из механики и физики. Отдельная глава посвящена линейным ОДУ второго порядка, к которым приводят многие прикладные задачи.
Книга содержит изложение базового курса по линейной алгебре. Дополнительно включены основные понятия тензорной алгебры и итерационные методы численного решения ...
Для инженеров и научных работников. 2006. - 816 с. В книге рассматриваются способы анализа наблюдений методами математической статистики. Последовательно на языке, доступном специалисту — не математику, излагаются современные методы анализа распределений вероятностей, оценки параметров распределений, проверки статистических гипотез, оценки связей между случайными величинами, планирования статистического эксперимента.
Содержит последовательное и систематическое изложение двух областей анализа — теории асимптотических разложений и теории специальных функций. Отличается своеобразным переплетением этих теорий, обстоятельностью изложения и сравнительной элементарностью. В основу положен курс лекций, читавшийся авто¬ром в течение ряда лет в Мэрилендском университете.
«Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной. Том 2 по содержанию соответствует первой половине второго тома «Справочного пособия по математическому анализу» и включает в себя теорию рядов и дифференциальное исчисление функций векторного аргумента.
«Справочное пособие по высшей математике» выходит в пяти томах и представляет собой новое, исправленное и существенно дополненное издание «Справочного пособия по математическому анализу» тех же авторов. В новом издании пособие охватывает три крупных раздела курса высшей математики — математический анализ, теорию дифференциальных уравнений, теорию функций комплексной переменной. Том 3 . В нем рассматриваются интегралы, зависящие от параметра, кратные и криволинейные интегралы, а также элементы векторного анализа.