Задача. Пусть дано множество \(n\)-элементов. Из него произвольным образом выбирают \(k\)-элементов. Подсчитать число возможных комбинаций.
Теория. Это обычная задача из комбинаторики на число сочетаний. Для вычисления числа сочетаний из \(n\) по \(k\) применяется формула комбинаторики:
\[С_n^k=\frac{n!}{k!\left(n-k\right)!}\]
Но, при вычислении по этой формуле приходится считать факториалы, поэтому удобнее воспользоваться нашим онлайн калькулятором для вычисления числа сочетаний.
Пример. Пусть в классе \(22\)-ученика. Из класса случайным образом выбирают \(5\)-школьников для участия в олимпиаде. Подсчитать число возможных вариантов.
Попробовать полный математический блокнот MathPad в работе можно здесь.