| \alpha | \alpha | \iota | \iota | \varrho | \varrho | ||||
| \beta | \beta | \kappa | \kappa | \sigma | \sigma | ||||
| \gamma | \gamma | \lambda | \lambda | \varsigma | \varsigma | ||||
| \delta | \delta | \mu | \mu | \tau | \tau | ||||
| \epsilon | \epsilon | \nu | \nu | \upsilon | \upsilon | ||||
| \varepsilon | \varepsilon | \xi | \xi | \phi | \phi | ||||
| \zeta | \zeta | o | o | \varphi | \varphi | ||||
| \eta | \eta | \pi | \pi | \chi | \chi | ||||
| \theta | \theta | \varpi | \varpi | \psi | \psi | ||||
| \vartheta | \vartheta | \rho | \rho | \omega | \omega | ||||
| \Gamma | \Gamma | \Xi | \Xi | \Phi | \Phi | ||||
| \Delta | \Delta | \Pi | \Pi | \Psi | \Psi | ||||
| \Theta | \Theta | \Sigma | \Sigma | \Omega | \Omega | ||||
| \Lambda | \Lambda | \Upsilon | \Upsilon |
| \aleph | \aleph | \prime | \prime | \forall | \forall | ||||
| \hbar | \hbar | \emptyset | \emptyset | \exists | \exists | ||||
| \imath | \imath | \nabla | \nabla | \neg | \neg | ||||
| \jmath | \jmath | \surd | \surd | \flat | \flat | ||||
| \ell | \ell | \top | \top | \natural | \natural | ||||
| \wp | \wp | \bot | \bot | \sharp | \sharp | ||||
| \Re | \Re | \| | \| | \clubsuit | \clubsuit | ||||
| \Im | \Im | \angle | \angle | \diamondsuit | \diamondsuit | ||||
| \partial | \partial | \triangle | \triangle | \heartsuit | \heartsuit | ||||
| \infty | \infty | \backslash | \backslash | \spadesuit | \spadesuit |
| \strut\ldots | \ldots | \strut\cdots | \cdots | \strut\vdots | \vdots | \strut\ddots | \ddots |
| \arcsin | \arcsin | \dim | \dim | \log | \log | ||||
| \arccos | \arccos | \exp | \exp | \max | \max | ||||
| \arctan | \arctan | \gcd | \gcd | \min | \min | ||||
| \arg | \arg | \hom | \hom | \Pr | \Pr | ||||
| \cos | \cos | \inf | \inf | \sec | \sec | ||||
| \cosh | \cosh | \ker | \ker | \sin | \sin | ||||
| \cot | \cot | \lg | \lg | \sinh | \sinh | ||||
| \coth | \coth | \lim | \lim | \sup | \sup | ||||
| \csc | \csc | \liminf | \liminf | \tan | \tan | ||||
| \deg | \deg | \limsup | \limsup | \tanh | \tanh | ||||
| \det | \det | \ln | \ln |
| \sum | \displaystyle\sum | \sum | \bigcap | \displaystyle\bigcap | \bigcap | \bigodot | \displaystyle\bigodot | \bigodot | ||||
| \prod | \displaystyle\prod | \prod | \bigcup | \displaystyle\bigcup | \bigcup | \bigotimes | \displaystyle\bigotimes | \bigotimes | ||||
| \coprod | \displaystyle\coprod | \coprod | \bigsqcup | \displaystyle\bigsqcup | \bigsqcup | \bigoplus | \displaystyle\bigoplus | \bigoplus | ||||
| \int | \displaystyle\int | \int | \bigvee | \displaystyle\bigvee | \bigvee | \biguplus | \displaystyle\biguplus | \biguplus | ||||
| \oint | \displaystyle\oint | \oint | \bigwedge | \displaystyle\bigwedge | \bigwedge |
| \pm | \pm | \cap | \cap | \vee | \vee | ||||
| \mp | \mp | \cup | \cup | \wedge | \wedge | ||||
| \setminus | \setminus | \uplus | \uplus | \oplus | \oplus | ||||
| \cdot | \cdot | \sqcap | \sqcap | \ominus | \ominus | ||||
| \times | \times | \sqcup | \sqcup | \otimes | \otimes | ||||
| \ast | \ast | \triangleleft | \triangleleft | \oslash | \oslash | ||||
| \star | \star | \triangleright | \triangleright | \odot | \odot | ||||
| \diamond | \diamond | \wr | \wr | \dagger | \dagger | ||||
| \circ | \circ | \bigcirc | \bigcirc | \ddagger | \ddagger | ||||
| \bullet | \bullet | \bigtriangleup | \bigtriangleup | \amalg | \amalg | ||||
| \div | \div | \bigtriangledown | \bigtriangledown |
| a\bmod p | a \bmod p | a\equiv b\pmod{p} | a\equiv b \pmod{p} |
| < | < | > | > | = | = | ||||
| \leq | \leq | \geq | \geq | \equiv | \equiv | ||||
| \prec | \prec | \succ | \succ | \sim | \sim | ||||
| \preceq | \preceq | \succeq | \succeq | \simeq | \simeq | ||||
| \ll | \ll | \gg | \gg | \asymp | \asymp | ||||
| \subset | \subset | \supset | \supset | \approx | \approx | ||||
| \subseteq | \subseteq | \supseteq | \supseteq | \cong | \cong | ||||
| \sqsubseteq | \sqsubseteq | \sqsupseteq | \sqsupseteq | \bowtie | \bowtie | ||||
| \in | \in | \ni | \ni | \propto | \propto | ||||
| \vdash | \vdash | \dashv | \dashv | \models | \models | ||||
| \smile | \smile | \mid | \mid | \doteq | \doteq | ||||
| \frown | \frown | \parallel | \parallel | \perp | \perp |
| \ \not< | \not< | \ \not> | \not> | \ \not= | \not= | ||||
| \ \not\leq | \not\leq | \ \not\geq | \not\geq | \ \not\equiv | \not\equiv | ||||
| \ \not\prec | \not\prec | \ \not\succ | \not\succ | \ \not\sim | \not\sim | ||||
| \ \not\preceq | \not\preceq | \ \not\succeq | \not\succeq | \ \not\simeq | \not\simeq | ||||
| \ \not\subset | \not\subset | \ \not\supset | \not\supset | \ \not\approx | \not\approx | ||||
| \ \not\subseteq | \not\subseteq | \ \not\supseteq | \not\supseteq | \ \not\cong | \not\cong | ||||
| \ \not\sqsubseteq | \not\sqsubseteq | \ \not\sqsupseteq | \not\sqsupseteq | \ \not\asymp | \not\asymp | ||||
| \ \notin | \notin |
| \leftarrow | \leftarrow | \longleftarrow | \longleftarrow | \uparrow | \uparrow | ||||
| \Leftarrow | \Leftarrow | \Longleftarrow | \Longleftarrow | \Uparrow | \Uparrow | ||||
| \rightarrow | \rightarriw | \longrightarrow | \longrightarrow | \downarrow | \downarrow | ||||
| \Rightarrow | \Rightarrow | \Longrightarrow | \Longrightarrow | \Downarrow | \Downarrow | ||||
| \leftrightarrow | \leftrightarrow | \longleftrightarrow | \longleftrightarrow | \updownarrow | \updownarrow | ||||
| \Leftrightarrow | \Leftrightarrow | \Longleftrightarrow | \Longleftrightarrow | \Updownarrow | \Updownarrow | ||||
| \mapsto | \mapsto | \longmapsto | \longmapsto | \nearrow | \nearrow | ||||
| \hookleftarrow | \hookleftarrow | \hookrightarrow | \hookrightarrow | \searrow | \searrow | ||||
| \leftharpoonup | \leftharpoonup | \rightharpoonup | \rightharpoonup | \swarrow | \swarrow | ||||
| \leftharpoondown | \leftharpoondown | \rightharpoondown | \rightharpoondown | \nwarrow | \nwarrow | ||||
| \rightleftharpoons | \rightleftharpoons |
\hbox{normal:}\qquad
(\; )\; [\; ]\; \{\; \}\; \lfloor\;\rfloor\; \lceil\;\rceil\;
\langle\;\rangle\; /\; \backslash\; |\;\vert\;\Vert\;
\uparrow\; \Uparrow\; \downarrow\;\Downarrow\;
\updownarrow\;\Updownarrow\;
\lgroup\;\rgroup\; \lmoustache\;\rmoustache
\hbox{\big:}\qquad
\big(\; \big)\; \big[\; \big]\; \big\{\; \big\}\;
\big\lfloor\;\big\rfloor\; \big\lceil\;\big\rceil\;
\big\langle\;\big\rangle\; \big/\; \big\backslash\; \big\vert\;\big\Vert\;
\big\uparrow\; \big\Uparrow\; \big\downarrow\;\big\Downarrow\;
\big\updownarrow\;\big\Updownarrow\;
\big\lgroup\;\big\rgroup\; \big\lmoustache\;\big\rmoustache
\hbox{\Big:}\qquad
\Big(\; \Big)\; \Big[\; \Big]\; \Big\{\; \Big\}\;
\Big\lfloor\;\Big\rfloor\; \Big\lceil\;\Big\rceil\;
\Big\langle\;\Big\rangle\; \Big/\; \Big\backslash\; \Big\vert\;\Big\Vert\;
\Big\uparrow\; \Big\Uparrow\; \Big\downarrow\;\Big\Downarrow\;
\Big\updownarrow\;\Big\Updownarrow\;
\Big\lgroup\;\Big\rgroup\; \Big\lmoustache\;\Big\rmoustache
\hbox{\bigg:}\qquad
\bigg(\; \bigg)\; \bigg[\; \bigg]\; \bigg\{\; \bigg\}\;
\bigg\lfloor\;\bigg\rfloor\; \bigg\lceil\;\bigg\rceil\;
\bigg\langle\;\bigg\rangle\; \bigg/\; \bigg\backslash\; \bigg\vert\;\bigg\Vert\;
\bigg\uparrow\; \bigg\Uparrow\; \bigg\downarrow\;\bigg\Downarrow\;
\bigg\updownarrow\;\bigg\Updownarrow\;
\bigg\lgroup\;\bigg\rgroup\; \bigg\lmoustache\;\bigg\rmoustache
\hbox{\Bigg:}\qquad
\Bigg(\; \Bigg)\; \Bigg[\; \Bigg]\; \Bigg\{\; \Bigg\}\;
\Bigg\lfloor\;\Bigg\rfloor\; \Bigg\lceil\;\Bigg\rceil\;
\Bigg\langle\;\Bigg\rangle\; \Bigg/\; \Bigg\backslash\; \Bigg\vert\;\Bigg\Vert\;
\Bigg\uparrow\; \Bigg\Uparrow\; \Bigg\downarrow\;\Bigg\Downarrow\;
\Bigg\updownarrow\;\Bigg\Updownarrow\;
\Bigg\lgroup\;\Bigg\rgroup\; \Bigg\lmoustache\;\Bigg\rmoustache
| \overline{x+y+z} | \overline{x+y+z} | |
| \underline{x+y+z} | \underline{x+y+z} | |
| \overbrace{x+\cdots+x}^{k\;\rm times} | \overbrace{x+\cdots+x}^{k\;\rm times} | |
| \underbrace{x+\cdots+x}_{k\;\rm times} | \underbrace{x+\cdots+x}_{k\;\rm times} | |
| \overleftarrow{x_1+\cdots+x_k} | \overleftarrow{x_1+\cdots+x_k} | |
| \overrightarrow{x_1+\cdots+x_k} | \overrightarrow{x_1+\cdots+x_k} |
| {n \choose 2} | \displaystyle{n \choose 2} | ||
| {n \brack 2} | \displaystyle{n \brack 2} | ||
| {n \brace 2} | \displaystyle{n \brace 2} | ||
f(x)=\cases { x^2+1&\text{if $x<0$}\cr 1-x&\text{otherwise} } | f(x)=\cases{x^2+1&\text{if $x<0$}\cr 1-x&\text{otherwise}} | ||
| \pmatrix{1& 0\\ 0& 1} | \pmatrix{1& 0\\ 0& 1} | ||
| \left[\matrix{a^2-b^2& -1\\ 1& 2ab}\right] | \left[\matrix{a^2-b^2& -1\\ 1& 2ab}\right] |
| \ne | \ne or \neq | (same as \not=) | \dagger | \dagger | |
| \le | \le | (same as \leq) | \ddagger | \ddagger | |
| \ge | \ge | (same as \geq) | |||
| \{ | \{ | (same as \lbrace) | |||
| \} | \} | (same as \rbrace) | |||
| \to | \to | (same as \rightarrow) | |||
| \gets | \gets | (same as \leftarrow) | |||
| \owns | \owns | (same as \ni) | |||
| \land | \land | (same as \wedge) | |||
| \lor | \lor | (same as \vee) | |||
| \lnot | \lnot | (same as \neg) | |||
| | | | | (same as \vert) | |||
| \| | \| | (same as \Vert) |